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An analytical equation is derived for total triple phase boundary length per unit volume (LTPB) in an
isotropic uniform random microstructure of LSM/YSZ composite cathode. The equation is applicable to
YSZ and LSM particles of any convex shapes and size distributions. The equation explicitly relates LTPB to
the shapes, mean sizes, coefficient of variation (a measure of the spread in a size distribution) and skew-
ness of YSZ and LSM particle populations, and volume fractions of YSZ, LSM, and porosity. The equation
is verified using available experimental data, and compared with the results of earlier simulations and
riple phase boundary length
omposite cathodes
OFC
ermet
icrostructure

models. The parametric analysis reveals that (1) non-equiaxed plate-like, flake-like, and needle-like YSZ
and LSM particle shapes can yield substantially higher LTPB; (2) mono-sized YSZ and LSM powders lead
to higher LTPB as compared to the powders having size distributions with large coefficient of variation;
(3) LTPB is inversely proportional to the mean sizes of YSZ and LSM particles; (4) high value of LTPB is
obtained at the lowest porosity volume fraction that permits sufficient connectivity of the pores for gas
permeability; and (5) LTPB is not sensitive to the relative proportion of YSZ and LSM phases in the regime
of interest in composite cathode applications.
. Introduction and background

The need for clean and sustainable energy has stimulated great
nterest in fuel cells. The advantages of solid oxide fuel cells (SOFCs)
ver other types of fuel cells include high energy efficiency and
xcellent fuel flexibility [1,2]. A wide variety of fuels can be directly
tilized in SOFCs, including hydrocarbon fuels, coal gas, and renew-
ble fuels. To be economically competitive and commercially viable,
owever, the performance of SOFCs must be further improved and
he cost must be reduced. The performance of SOFCs is often limited
y the interfacial losses arising from the resistances to charge and
ass transfer along surfaces; across interfaces; and through the

orous electrodes, especially through the cathode where oxygen
eduction takes place [3]. Lanthanum doped strontium mangan-
te (LSM) is the most widely used cathode for SOFC based on
ttria-stabilized zirconia (YSZ) electrolyte because of its excellent
hemical and thermal compatibility with YSZ. Nonetheless, the
atalytic activity of LSM is severely limited by its poor ionic conduc-

ivity, particularly at low operating temperatures. Consequently, in
he LSM/YSZ cathodes, the electrochemically active sites for oxy-
en reduction reactions are mostly at the triple phase boundaries
TPB), which are the lineal regions common to LSM, YSZ, and air.
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Therefore, an important strategy to increase the catalytic activity in
the cathodes at low temperatures is to increase the number of such
active sites via an increase in the total length of the TPB per unit
volume of microstructure (LTPB) through rational design of porous
composites containing LSM and YSZ [4–7]. The performance of such
composite cathodes is microstructure sensitive [8–12].

The LSM/YSZ composite cathodes are typically fabricated using
powder processing techniques involving printing or spraying and
sintering of a powder mix consisting of YSZ and LSM powders.
It has been reported that the microstructure of the composite
cathodes is sensitive to the processing parameters such as the
mean sizes of the initial powders [10,11] and sintering temper-
ature [9,12]. The microstructure in turn affects the performance
of the cathode. One of the key microstructural parameters that
affects the electro-chemical response of porous LSM/YSZ cathodes
is the total length of the LSM-YSZ-porosity triple phase bound-
aries in the three-dimensional (3D) microstructure per unit volume
(i.e., LTPB) because O2 reduction and incorporation of O2− into the
electrolyte take place at these sites [8]. Accordingly, development
of quantitative relationships among the processing parameters,
microstructural geometry, and electro-chemical response of com-

posite cathode materials is vital to the effective optimization of
electrode performance. Therefore, it is of interest to develop the
quantitative relationships that describe the effects of the process
variables such as morphology, mean sizes and size distributions of
the powders of YSZ and LSM prior to sintering on LTPB.

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:arun.gokhale@mse.gatech.edu
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LSM. This key equation will be needed subsequently.

(�Y )ex(�L)ex = ˛

(1 + ˛)2
[ln(�P)]2 (5)
04 A.M. Gokhale et al. / Journal of

The relationships between LTPB and the geometric characteristic
f the powder mix prior to sintering have been studied via geomet-
ic computer simulations of the composite cathode microstructure
13–21]. Such simulated microstructures are also useful for imple-

entation in the computational simulations of the electrochemical
ehavior and performance of the composite cathode [13,14,16–21].
he microstructure simulations must allow overlaps among the YSZ
nd LSM particles to create the TPB because simulations based on
on-overlapping particles (so called hard-core simulations) con-
ain only point contacts among the particles. Consequently, the
imulated LTPB depends on the extent of the overlaps permit-
ed. Geometric simulations of LTPB reported in the literature can
e divided into two groups: (a) the simulations where the YSZ
nd LSM particles are placed on a periodic lattice but the lattice
oints are occupied by either YSZ or LSM in a random fashion with
he probability proportional to their respective number densities
13,14,16,20], and (b) the simulations involving random packing of
mpenetrable mono-sized spheres of YSZ and LSM followed by a
xed amount of dilation (increase) of sphere diameters to create
article overlaps and TPB [15,17,18,21]. The stochastic nature of the
patial distribution of the particle centers in the real microstruc-
ure of the composite cathode is not captured in the simulations
ased on a periodic lattice (i.e., group (a)), whereas the simula-
ions based on random packing of YSZ and LSM particles account
or the stochastic nature of the corresponding real microstructures.
arlier simulations of the TPB assume that the YSZ and LSM parti-
les are spherical and mono-sized. On the other hand, in a typical
owder mix, distributions of sizes of YSZ and LSM particles usually
xist. Thus, the simulations do not reveal the effects of the particle
hape and the distribution attributes such as the variance and the
kewness of the particle sizes on the LTPB.

Analytical models have also been proposed for LTPB [17,20].
hese models assume that (i) YSZ and LSM particles are spherical
nd mono-sized, (ii) all TPB are of the same length, and (iii) there is
o distribution of coordination numbers present in the microstruc-
ure. To compute LTPB using these models, it is essential to know
he mean coordination number for the particle populations, which
annot be measured experimentally, except via reconstruction
f the 3D microstructure [22], and is difficult to compute from
heoretical considerations without making numerous simplifying
ssumptions. Further, a distribution of coordination numbers
sually exists in the real microstructures having a distribution of
article sizes, and there is often a strong correlation between the
article size and the coordination number: larger particles have
igher coordination numbers [22]. In this contribution, a stochastic
eometry [23–25] based equation is derived that relates LTPB in
he 3D microstructure of the composite cathode to the parameters
uch as particle shape/morphology; mean sizes, standard deviation
nd skewness of YSZ and LSM size distributions; relative amounts
f YSZ and LSM; and volume fraction of the porosity. The equation
s based on a well-known stereological relationship for estimation
f microstructural surface area in 3D microstructures [26–28]. The
erivation of the equation is presented in the next section, and
hat is followed by critical analysis of the model, comparison with
xperimental data, and parametric studies for microstructural
ngineering to optimize LTPB.

. Theoretical development
.1. Extended microstructure

Consider a geometric microstructure model comprising an
sotropic uniform random (IUR) collection of convex1 particles

1 A particle shape is convex if a line joining any (and all) two arbitrary points on
ts surface lies inside the particle. Spheres, ellipsoids, polyhedrons with flat faces,
r Sources 194 (2009) 303–312

of YSZ and LSM in a 3D microstructural space, where the spa-
tial arrangement of the particle centers is given by the Poisson
process of spatial statistics [29], and the particles are allowed to
freely intersect and overlap with one another depending on their
spatial locations. Assume that there are no spatial correlations
in the locations of the particles. The space not occupied by YSZ
and/or LSM phases is the porosity. Such a geometric microstruc-
ture model is called an “extended” microstructure; the concept is
widely used in modeling phase transformations [30–35]. The clas-
sical Johnson–Mehl–Avrami equation used in phase transformation
theories [30–32] utilizes the concept of “extended” microstructure.
The concept of “extended” microstructure was initially developed
for two-phase microstructures, but recently it has been modified to
model microstructures containing three or more phases [33–35].

Clearly, in a real microstructure the particles cannot overlap.
Therefore, the properties of an extended microstructure (such
as volume fractions of phases) are overestimates of the prop-
erties of the corresponding “real” microstructure. Nonetheless,
the “real” microstructure model (i.e., microstructure model for
composite cathode) can be recovered from the corresponding
extended microstructure by subtracting the overlapped regions
from it. Mathematically, each convex particle in an extended
microstructure can be considered as a convex set, and an extended
microstructure can be treated as an IUR ensemble of convex sets.
Therefore, the corresponding “real” microstructure is simply the
union of these convex sets, which is amenable to an analytical treat-
ment using Boolean algebra of convex sets [36]. The microstructural
properties of the corresponding “real” microstructure obtained by
subtracting the overlapped regions in the extended microstructure
can be computed analytically from the properties of the extended
microstructure [36–38]. Let (�Y)ex and (�L)ex be the volume frac-
tions of YSZ and LSM in our extended microstructure. As the
particles of YSZ and LSM are allowed to overlap in the extended
microstructure, (�Y)ex and (�L)ex are not equal to their volume frac-
tions �Y and �L in the corresponding real microstructure, but they
are related as follows [33–35].

(1 + ˛)�L = 1 − exp{−(1 + ˛)(�L)ex} (1)

˛ + 1
˛

�Y = 1 − exp
{

−1 + a

˛
(�Y)ex

}
(2)

where,

�Y

�L
= (�Y)ex

(�L)ex
= ˛ (3)

The parameter ˛ is the relative proportion of YSZ and LSM phases
in the microstructure. In a microstructure containing YSZ, LSM, and
porosity, the sum of the real volume fractions of YSZ, LSM, and
porosity must be equal to one2. Therefore,

�Y + �L + �P = 1 (4)

In Eq. (4), �P is the volume fraction of the porosity in the real
microstructure. Combining Eqs. (1)–(4) leads to the following equa-
tion for the product of the extended volume fractions of YSZ and
cylinders, cones, plates, needles, etc. are all convex.
2 Note that in the present work, the volume fraction of a phase is equal to the total

volume occupied by that phase in the microstructural space divided by the total
volume of the microstrucutral space (i.e., specimen volume). This definition is dif-
ferent from the one used in the earlier papers on modeling of cathode microstructure
[15,17,42].
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shapes and any size-shape distributions, provided that the angular
orientations and locations of the YSZ and LSM particles are uniform
random. The YSZ and LSM particles need not be of the same con-
vex morphology or have the same size-shape distribution; the only
A.M. Gokhale et al. / Journal of

.2. Relationship between triple phase boundary lengths in real
nd extended microstructures

In the extended microstructure, the YSZ and LSM particles are
ermitted to overlap and intersect. The lines of intersection of
he YSZ and LSM particles are the lineal regions common to YSZ,
SM, and porosity, and therefore, they are the TPB of interest in
he extended microstructure. Let (LTPB)ex be the total length of
hese lines of intersection in the extended microstructure per unit
olume, and let LTPB be their total length in the corresponding
eal microstructure per unit volume. In general, LTPB is not equal
o (LTPB)ex because not all segments of the TPB in the extended

icrostructure contribute to the LTPB in the real microstructure:
nly those triple phase boundary line segments are present in the
eal microstructure that are not located in the space already occu-
ied by other YSZ and/or LSM particles, i.e., those that are located

n the space occupied by the porosity. In an IUR microstructure, the
robability that a randomly located infinitesimal line element falls

n the porosity phase is precisely equal to the volume fraction of the
orosity [23–28], and the probability is the same for all such line
lements and independent of the location. Therefore, the fraction
f the total length of the TPB in the extended microstructure that
s present in the corresponding real microstructure, LTPB/(LTPB)ex, is
recisely equal to the volume fraction of the porosity phase, �P, i.e.,

LTPB

(LTPB)ex
= �P (6)

r,

TPB = (LTPB)ex�P (7)

It remains to derive an expression for (LTPB)ex in terms of the
eometric characteristics of YSZ and LSM particles to complete the
erivation.

.3. Relationship between LTPB and geometric attributes of YSZ,
SM, and porosity

Numerous geometric attributes of 3D microstructures can be
tatistically estimated from the measurements performed on lower
imensional manifolds such as random two-dimensional (2D) sec-
ions through the 3D microstructure using classical stereological
elationships [23–28]. For example, volume fractions of the phases,
otal surface areas of microstructural surfaces per unit volume, and
ntegral mean curvature of surfaces in a 3D microstructure can be
stimated via unbiased sampling of the 3D microstructure using
lanes or surfaces as sampling probes [23–28]. Consider estimation
f total surface area S1 of surfaces of interest in the 3D microstruc-
ure of a specimen of volume ˙. Suppose this 3D microstructure
s sampled in an unbiased3 manner with another set of probe sur-
aces. This can be done by placing the probe surfaces of uniform
andom orientations at a large number of uniform random loca-
ions in the microstructural space of interest. Let Sprobe be the total
rea of the probe surfaces. The intersections of the probe surfaces
ith the microstructural surfaces of interest create lines of intersec-

ion. Let Ltotal be the total length of these lines. Stochastic geometry

ives the following general relationship [23–28,39].

S1

˙
= 4

�

Ltotal

Sprobe
(8)

3 Unbiased sampling implies that sampling at all locations with probes having all
ossible orientations is equally likely. Therefore, each microstructural feature has
he same probability of being included in the statistical sample.
r Sources 194 (2009) 303–312 305

or,

S1

˙
= 4

�

Ltotal/˙

Sprobe/˙
(9)

Eqs. (8) and (9) are applicable to any 3D microstructure and the
probe surfaces of any geometry (for example, probes can be sur-
faces of ellipsoids, polyhedrons, or planes). The only requirement
is that the sampling must be unbiased, which implies that the sur-
faces of the probes and the surfaces of interest must have uniform
random orientations and locations with respect to one another. This
requirement is satisfied in our extended microstructure having uni-
form random orientations and locations of YSZ and LSM particles.
Now, consider estimation of the total length of the TPB per unit vol-
ume (LTPB)ex in the extended microstructure using Eq. (9). Consider
a thought experiment where the total surface area of YSZ particle
surfaces per unit volume (SYZ)ex is to be estimated (i.e., S1/˙ in Eq.
(9)) using LSM particle surfaces as probes via application of Eq. (9).
Let (SLM)ex be the total area of the LSM surfaces per unit volume
(i.e., probe surface area per unit volume, Sprobe/˙). Intersections of
YSZ and probe LSM surfaces are the TPB whose total length per unit
volume is (LTPB)ex (i.e., Ltotal/˙). For isotropic uniform random YSZ
and LSM particles, Eq. (9) gives the following result4.

(SYZ)ex = 4
�

[
(LTPB)ex

(SLM)ex

]
(10)

or,

(LTPB)ex = �

4
(SYZ)ex(SLM)ex (11)

Combining Eqs. (7) and (11) gives the following expression for
the triple phase boundary length per unit volume LTPB in the corre-
sponding real microstructure.

LTPB = �

4
�P(SYZ)ex(SLM)ex (12)

Let 〈SY〉 and 〈SL〉 be the mean values of the surface areas and let
〈VY〉 and 〈VL〉 be the mean volumes of the YSZ and LSM particles,
respectively. Let NY and NL be the number of YSZ and LSM particles
per unit volume, respectively. Therefore,

(SYZ)ex = 〈SY〉NY (13)

(SLM)ex = 〈SL〉NL (14)

(�Y)ex = 〈VY〉NY (15)

(�L)ex = 〈VL〉NL (16)

Combining Eqs. (5) and (13)–(16) yields the following result.

(SYZ)ex(SLM)ex = 〈SY〉〈SL〉
〈VY〉〈VL〉

˛

(1 + ˛)2
[ln(�P)]2 (17)

Combining Eqs. (12) and (17) gives the following result for (LTPB).

LTPB = �

4
˛

(1 + ˛)2

{
�P[ln(�P)]2}[ 〈SY〉〈SL〉

〈VY〉〈VL〉
]

(18)

Eq. (18) is applicable to YSZ and LSM particles of any convex
4 If the sampling surfaces are planes, Eq. (10) reduces to the following stereological
relationship [23–28,39], which is used to estimate the total microstructural surfaces
of interest per unit volume S1/˙ from the measurements of the total length of the
boundary traces in the random 2D sections per unit area LA [23–25,39].

S1

˙
= 4

�
LA.
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equirement is that each particle must be convex. For example, YSZ
articles can be spheres and LSM particles can be plate shaped. The
esult is valid for any porosity volume fraction �P, and for any value
f the ratio of the amounts of YSZ and LSM, ˛. It is convenient to
rite Eq. (18) in the following form.

TPB = �

4
F1(˛)F2(�P)

[ 〈SY〉〈SL〉
〈VY〉〈VL〉

]
(19)

here

1(˛) = ˛

(1 + ˛)2
(20)

nd,

2(�P) = �P
[
ln(�P)

]2
(21)

In Eq. (19), the term F2(�P) explicitly brings out the dependence
f LTPB on the porosity volume fraction �P, whereas the term F1(˛)
aptures the dependence of LTPB on the relative proportions of YSZ
nd LSM, ˛, explicitly. Recall that ˛ is equal to �Y/�L (see Eq. (3)).
herefore, the factors F1(˛) and F2(�P) completely determine how
TPB varies with the volume fractions of the three phases, YSZ, LSM,
nd porosity. The dependence of LTPB on the morphology, the mean
izes, and size-shape distributions of the YSZ and LSM particles is
ontained in the last term in the square bracket in Eq. (20), i.e.,
SY〉〈SL〉/〈VY〉〈VL〉. The mean volumes and surface areas of YSZ and
SM particles can be expressed as follows.

SY〉 = K1Y〈D2
Y〉 (22)

SL〉 = K1L〈D2
L 〉 (23)

VY〉 = K2Y〈D3
Y〉 (24)

VL〉 = K2L〈D3
L 〉 (25)

In the above equations, K1Y, K1L, K2Y, K2L are the shape factors
hat depend on the shape(s) of the YSZ and LSM particles. 〈D2

Y〉 is the
ean value of the square of the YSZ particle sizes (i.e., the second
oment of the size distribution), and 〈D2

L 〉 is the mean value of
quare of the LSM particle sizes5. Similarly, 〈D3

Y〉 is the mean value
f the cube of the YSZ particle sizes (i.e., the third moment of the
ize distribution), and 〈D3

L 〉 is the mean value of cube of the LSM
article sizes. Combining Eq. (19) with the Eqs. (22)–(25) gives the
ollowing result.

TPB = �

4
F1(˛)F2(�P)F3(K)

〈D2
Y〉〈D2

L 〉
〈D3

Y〉〈D3
Y〉 (26)

here

3(K) = K1YK1L

K2YK2L
(27)

F3(K) depends only on the shapes of the YSZ and LSM particles.
or spherical YSZ and LSM particles, F3(K) is equal to 36 and the
iameters are the size parameters. It remains to deconvolute the
ffects of the mean particle sizes, spreads, and skewness of the size
istributions of YSZ and LSM on the LTPB that are contained in the
erm 〈D2

Y〉〈D2
L 〉/〈D3

Y〉〈D3
L 〉 in Eq. (26). Let D represent the particle sizes

n a size distribution. The arithmetic mean particle size 〈D〉, the
ariance �2, the coefficient of variation CV, and the skewness � of
size distribution function f (D) are defined as follows [40,41].∫
D〉 = Df (D)dD (28)

5 In general, the mean of the square of the particles sizes is not equal to the square
f the mean value of the particle sizes, except when all particles are of the same size.
imilarly, the mean of the cube of the particles sizes is not equal to the cube of the
ean value of the particle sizes, except when all particles are of the same size.
r Sources 194 (2009) 303–312

�2 =
∫

[D − 〈D〉]
2

f (D)dD = 〈D2〉 − 〈D〉2 (29)

CV = �

〈D〉 (30)

� = 1
�3

∫
[D − 〈D〉]3f (D)dD (31)

Combining Eqs. (29)–(31) gives the following results.

〈D2〉 = 〈D〉2(1 + CV2) (32)

〈D3〉 = 〈D〉3(1 + 3CV2 + �CV3) (33)

Substituting Eqs. (32) and (33) into Eq. (26) leads to the following
result.

LTPB = �

4
F1(˛)F2(�P)F3(K)F4(CV, �)

1
〈DY〉〈DL〉

(34)

where

F4(CV, �) = (1 + CV2
Y)(1 + CV2

L )

(1 + 3CV2
Y + �YCV3

Y)(1 + 3CV2
L + �LCV3

L )
(35)

In Eq. (34), CVY and CVL are coefficient of variation, and �Y and
�L are skewness parameters of the YSZ and LSM powder size dis-
tributions, respectively. Note that F4(CV,�) depends only on the
coefficient of variation and the skewness of the size distributions,
and it explicitly brings out the effect of these parameters on LTPB.

Eq. (34) predicts that for given volume fractions of YSZ, LSM,
and porosity, and the coefficient of variation and the skewness of
the YSZ and LSM size distributions, and particle morphologies, LTPB
is inversely proportional to the mean size of YSZ particles, 〈DY〉,
and the mean size of LSM particles, 〈DL〉. Therefore, the finer the
mean particle sizes of YSZ and/or LSM, the higher is the total length
of the TPB per unit volume, LTPB. Similar trend has been predicted
by earlier simulations and analytical models for LTPB in compos-
ite cathodes [15,17,42]. Nonetheless, earlier analytical treatments of
LTPB were based on an assumption that all YSZ and LSM particles are
of the same size, and therefore, did not capture the separate effects
of different YSZ and LSM mean sizes on the LTPB. The present result
shows that the LTPB can be increased either by decreasing the mean
size of YSZ particles, or LSM particles, or by decreasing the mean
sizes of both the particle populations, and it explicitly captures the
dependence of LTPB on the mean particle sizes. Eq. (34) also explic-
itly brings out the effects of other geometric characteristics on LTPB
through the functions F1(˛), F2(�P), F3(K), and F4(CV,�), which facil-
itates the parametric studies. Analysis of the results, comparison
with experimental data, and parametric studies for microstructural
engineering to optimize LTPB are presented in the next section.

3. Results and discussion

A stochastic geometry based approach is presented for geomet-
ric modeling of total triple phase boundary length per unit volume
LTPB in the microstructure of composite SOFC cathodes. The model
is based on the assumptions that the YSZ and LSM particles are
convex, they have uniform random angular orientations and spa-
tial locations, and there are no spatial correlations in their locations.
The model permits the particles to freely overlap and intersect in the
extended microstructure. The approach enables tractable analytical
treatment of the geometric problem, and leads to closed form ana-
lytical solution that relates LTPB to numerous geometric parameters

including volume fractions of the phases; morphologies/shapes of
particles; and the mean sizes, the coefficient of variation, and the
skewness of YSZ and LSM size distributions. Although Eq. (34) is
derived in the context of the microstructures of SOFC composite
cathodes, it is equally applicable to the microstructures of SOFC
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nodes, or to any three phase uniform random isotropic microstruc-
ure. Unlike the earlier analytical models [17,42], to calculate the
TPB using Eq. (34), it is not necessary to know the mean coor-
ination number of the particles, which is difficult to measure
xperimentally (because reconstruction of 3D microstructure is
equired [22]), and is difficult to compute from theoretical consider-
tions without making numerous simplifying assumptions. Further,
arlier models and simulations assumed that YSZ and LSM particles
re mono-sized spheres, and therefore, did not reveal the effects
f the morphology/shape of the YSZ and LSM particles and the
owder characteristics such as the coefficient of variation (a mea-
ure of spread in the particle sizes) and the skewness of the size
istributions on LTPB.

Eq. (34) is developed for prediction of LTPB in powder-processed
omposite cathodes fabricated via sintering of a powder mix con-
aining YSZ and LSM powder particles. It may have to be modified
or the composite cathodes fabricated using other processing
outes. It is important to point out that the present model pre-
icts the total (active plus inactive) triple phase boundary length.
ome TPB are not topologically connected to the electrical con-
ucting paths and gas permeating pores in the microstructure, and
herefore, do not participate in the electrochemical processes. In a
ubsequent contribution it will be shown that beyond the percola-
ion thresholds, about 90% of the total triple phase boundary length
s connected to the electrical conducting paths and gas permeating
ores in the microstructure [51].

All TPB that are connected to the electrical conductive paths and
as permeating pores also may not be electrochemically active. The
lectrochemical activity at the TPB depend on the availability of
he electro-active species involved in the electrochemical reactions
e.g., VO

••, h•, and O2) at or near the TPB, which is dictated by V ••

ransport through YSZ, h•• transport through LSM, and O2 transport
hrough the pores of the electrode. For a typical YSZ/LSM cathode
ith sufficient porosity for O2 transport, the electrochemical activ-

ty induced by a triple phase boundary often diminishes with the
istance from the interface between the YSZ/LSM composite cath-
de and the YSZ electrolyte because the ionic conductivity of YSZ
s orders of magnitudes smaller than the electronic conductivity of
SM. Therefore, only the triple phase boundary segments within a
ertain effective membrane thickness (which is less than the geo-
etric thickness of the composite cathode) that are connected to

he electrical conductive paths and gas permeating pores are elec-
rochemically active [17,50]. Nonetheless, it can be said that in a
omposite cathode having isotropic uniform random microstruc-
ure, an increase in the LTPB is expected to lead to an increase in the
lectrochemically active triple phase boundary length per unit vol-
me. Therefore, the microstructural engineering to optimize the
TPB using the present approach should also lead to an increase
n the electrochemically active triple phase boundary length per
nit volume, which is likely to improve the performance of the
athode.

The present model is applicable only to the microstructural vol-
me segments that are at least of the size of the smallest statistical
epresentative volume element6 (RVE) of the corresponding infinite
lobal microstructure. This is true of any theoretical model or simu-
ation. Therefore, the present results may not be applicable to very
hin composite cathode membranes (i.e., thickness on the order

f the particle size). In a subsequent contribution, we will exam-
ne at what ratio of membrane thickness to mean particle size the

icrostructural segment becomes sufficiently large to be treated as
VE.

6 A representative volume element of a microstructure is such that if different
olume elements of that size are chosen at random anywhere in the corresponding
nfinite microstructure all of them will have the same properties.
r Sources 194 (2009) 303–312 307

The input size distribution data (mean sizes, coefficient of vari-
ation, and skewness) needed for the present model pertain to the
YSZ and LSM particles present in the powder mix after ball milling
(or after any attrition process used to obtain a homogeneous pow-
der mix) and prior to sintering (i.e., not size distributions in the
unmixed initial powders of YSZ and LSM) because operations like
ball milling fragment the particles and alter the size distributions.
Further, if the powder particles agglomerate during any of the pow-
der processing steps then the distribution characteristics of the
agglomerated powders must be used in Eq. (34).

The present approach is purely geometric: it does not incorpo-
rate the physics of the sintering process. Therefore, in its present
form, the model does not account for coarsening of the microstruc-
ture during sintering that can decrease the LTPB. In the case of
LSM/YSZ composite cathodes, the sintering is typically carried out
at temperatures below 1200 ◦C to minimize such coarsening so that
the fine microstructure (and higher LTPB) can be retained after sin-
tering [11,12], and in such cases, Eq. (34) can predict the LTPB in a
precise manner.

It is important to point out that the earlier modeling and sim-
ulation efforts were also either geometric or involved substantial
simplifying assumptions concerning the microstructural geometry
and the physics of the sintering process. This is because a geometri-
cally general and rigorous sintering physics based modeling of LTPB
is too complex to be analytically tractable or computationally fea-
sible. Consequently, it is of interest to compare the predictions of
the present model with the experimental data on LTPB and earlier
models and simulations.

3.1. Comparison with experimental data

To verify the present model (Eq. (34)), the following experimen-
tal data are needed: (i) experimentally estimated LTPB either via
reconstruction of 3D microstructure or by using the stereological
techniques, (ii) volume fractions of YSZ, LSM, and porosity, and (iii)
mean sizes, coefficient of variation, and skewness of the YSZ and
LSM particle size distributions after ball milling or powder mix-
ing operations and prior to sintering. There have been only two
experimental measurements of LTPB in composite SOFC cathode
microstructures reported in the literature [47,49], and one study
has reported LTPB data in SOFC anode microstructure [48]. In all of
these cases, the particle size distribution data needed to verify Eq.
(34) have not been reported. Nonetheless, Eq. (12) (from which Eq.
(34) has been obtained without any additional assumptions) can
be cast into a form that can be verified using the available data. For
an isotropic uniform random microstructure, it can be shown that
[43,44]:

SYP = �P(SY)ex (36)

and,

SLP = �P(SL)ex (37)

SYP and SLP are the total surface areas of YSZ/porosity surfaces
and LSM/porosity surfaces per unit volume of specimen in the real
microstructure, which can be experimentally measured. Therefore,
combining Eqs. (12), (36) and (37) leads to the following result.

LTPB = �

4
SYPSLP

�P
(38)

An equation analogous to Eq. (38) was reported earlier in the
context of microstrucutral evolution during phase transformations

[45]. It is important to point out that Eq. (38) is applicable to
any isotropic uniform-random microstructure: its applicability is
not limited to the microstructures of powder processed composite
cathodes. Nonetheless, the use of Eq. (38) requires the experimen-
tal microstrucutral data, and therefore, unlike Eq. (34), it cannot
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redict LTPB in an a priori manner from initial raw material charac-
eristics (for example, size distributions of initial powder particles)
efore fabrication of the composite cathode. Wilson et al. [46]
econstructed 3D microstructure of SOFC anode containing YSZ,
i, and porosity, and measured LTPB, porosity volume fraction �P,
nd total surface areas of YSZ-porosity, SYP, and Ni-Porosity, SNP
er unit volume. As the anode contains Ni instead of LSM, in Eq.
38), SLP has to be replaced by SNP. Wilson et al. reported LTPB
qual to 4.28 �m �m−3, and �P, SYP, and SNP equal to 0.195, 0.5
nd 1.9 �m2 �m−3, respectively. Substituting these data in Eq. (38)
ields the value of LTPB equal to 3.83 �m �m−3, which is in good
greement with the experimental value of 4.28 �m �m−3.

Zhang et al. [49] estimated the LTPB using atomic force
icroscopy and stereological techniques in a composite LSM/YSZ

athode7 to be equal to 10.8 ± 1.15 �m �m−3. The experimentally
easured volume fractions of YSZ and LSM were (0.28 ± 0.027)

nd (0.26 ± 0.018), respectively, and the experimentally measured
YP and SLP were (3.87 ± 0.21) and (2.32 ± 0.3) �m2 �m−3, respec-
ively. Recall that �P is equal to (1 − �Y − �L). Substituting these
ata into Eq. (38) yields the computed value of LTPB equal to
15.8 ± 4.3)�m �m−3. The large error bar in the computed LTPB is
ecause each of the three experimentally measured parameters on
he right hand side in Eq. (38) has a statistical sampling error. Con-
idering large sampling error associated with computed LTPB, there
s reasonable agreement between the computed and experimen-
ally measured LTPB values.

Wilson et al. [47] performed 3D microstructure reconstructions
f a series of composite cathodes having different proportions
f YSZ and LSM, and reported that the LTPB is in the range of
–10 �m �m−3 and it is not sensitive to the proportion of YSZ and
SM. This trend can be predicted from Eq. (34), where the depen-
ence of LTPB on the relative proportion of YSZ and LSM represented
y parameter ˛ resides in the function F1(˛). When ˛ is in the range
.5–2.5, F1(˛) is in the range of (0.225 ± 0.0225), i.e., a variation
f ±10%. Thus, LTPB is not sensitive to relative proportion of YSZ
nd LSM when ˛ is in the range 0.5–2.5 (the range for practical
pplications), as observed by Wilson et al. [47].

.2. Comparison with simulations and models reported in
iterature

Ali et al. [15] performed simulations of composite cathode
icrostructures involving random packing of impenetrable mono-

ized spheres followed by 10% dilation of the particle diameters to
reate the TPB. The simulations predict that the LTPB decreases with
ncreasing particle size, with a trend similar to that predicted by
q. (34). Nonetheless, the simulated triple phase boundary length
eported by these researchers is the active LTPB, whereas Eq. (34)
redicts the total (active plus inactive) LTPB. As mentioned earlier,
eyond the percolation threshold, about 90% or more of the total
TPB is active LTPB [51], and therefore, there is no significant differ-
nce between the two. Consequently, the simulated LTPB reported
y Ali et al. [15] can be compared with the predictions of Eq. (34)
or the porosity volume fractions in the range of 0.3–0.5, and rel-
tive proportions of YSZ and LSM (i.e., parameter ˛ in Eq. (34)) in
he range of 0.5–2.5. Ali et al. [15] assumed that the YSZ and LSM
articles are mono-sized spheres. For these particle characteristics,

n Eq. (34), F (K) = 36 and F (CV,�) = 1. The L computed from Eq.
3 4 TPB
34) using these values of F3(K) and F4(CV,�) for the porosity vol-
me fractions of 0.3 and ˛ in the range of 0.5–1.5 are given in Table 1
or comparison with the simulated LTPB values obtained by Ali et
l. [15]. There is a good agreement between the values of simu-

7 The error bars are statistical sampling errors for 95% confidence interval.
r Sources 194 (2009) 303–312

lated LTPB obtained by Ali et al. [15] and the corresponding values
computed using Eq. (34).

Schneider et al. [17] have proposed the following analytical
equation for total (active plus inactive) LTPB based on random pack-
ing of mono-size spheres of radius r.

LTPB = 3d

r2

√
1 −

(
d0

d

)1/3

�io(1 − �io)Z (39)

where,

�io = �Y

�Y + �L
= ˛

1 + ˛
(40)

In Eq. (39), do is the density of the powder mix before sintering,
d is the density after sintering, and Z is the mean coordination num-
ber of the particles. Interestingly, the �io(1 − �io) factor in Eq. (39) is
equal to ˛/(1 + ˛)2, i.e., F1(˛) in Eq. (34), and for mono-sized YSZ and
LSM having the same radius r, Eqs. (39) and (34) predict that LTPB is
inversely proportional to the square of the particle size. However,
Eq. (34) is applicable to YSZ and LSM particles having any size distri-
bution and convex particle shape(s). On the other hand, Schneider
et al. assume that YSZ and LSM particles are spherical and mono-
sized, and to compute LTPB using their equation it is necessary to
assume a value for the mean coordination number Z and the density
of initial powder mix do. Further, Eq. (39) leads to a physically unac-
ceptable limit as d approaches 1 (i.e., fully dense material). In the
limit of d → 1 (i.e., porosity volume fraction �P → 0) the LTPB must
approach zero because YSZ-LSM-porosity TPB cannot exist when
there are no pores. However, Eq. (39) predicts a non-zero value of
LTPB as d → 1, which is physically untenable. On the other hand, the
LTPB predicted by Eq. (34) reaches the correct limit of zero as the
volume fraction of porosity �P approaches zero or one. Schneider et
al. computed the values of LTPB from Eq. (39) assuming d0 = 0.5 and
Z = 6.3. For these values of d0 and Z, Eq. (39) gives LTPB in the range of
1.1–1.2 �m �m−3 when r = 1 �m and D = 0.75 for �io in the range of
0.3–0.7. For the same range of �io, and r and d values, Eq. (34) yields
LTPB in the range of 0.7–0.84 �m �m−3, which is somewhat lower
than that obtained from Eq. (39). These differences are probably
due to the values of d0 and Z assumed by Schneider et al. (some-
what different values of these parameters lead to better agreement)
and/or because Eq. (39) is inaccurate at high values of d, as it gives
physically unacceptable nonzero value of LTPB as d approaches one.

3.3. Parametric studies

Eq. (34) predicts that for given morphologies, volume fractions,
coefficient of variation, and skewness of the YSZ and LSM particle
populations, the LTPB is inversely proportional to the mean sizes of
YSZ and LSM particles, 〈DY〉 and 〈DL〉. This trend is also predicted by
earlier simulations and analytical models [15,17,42]. Nonetheless,
earlier analytical treatments of LTPB assumed that YSZ and LSM par-
ticles are spherical and of the same mono-size, and therefore, did
not reveal the separate effects of different YSZ and LSM mean sizes
on the LTPB. The present result shows that LTPB can be increased by
decreasing the mean size of YSZ or LSM particles, or of both YSZ and
LSM particles, and it explicitly captures the dependence of LTPB on
the mean particle sizes.

3.3.1. Effect of relative proportion of YSZ and LSM on LTPB

The relative proportion of YSZ and LSM is specified by the param-
eter ˛, which is equal to the ratio of the volume fraction of YSZ and
LSM, [�Y/�L]. In Eq. (34), the dependence of LTPB on ˛ is expressed

by the function F1(˛). In principle, ˛ can vary from zero to infin-
ity, and at these two limits, F1(˛) and LTPB, approach zero as they
must for the model to be physically tenable. Nonetheless, for SOFC
applications, YSZ, LSM, and porosity phases must topologically per-
colate. Therefore, each phase should have volume fraction in the
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Table 1
Comparison of the TPB length reported in Ali et al.[15] and calculated with Eq. (34).

�Y ˛ �P DY, DL Simulated LTPB (�m �m−3) (Ali et al. [15]) Computed LTPB (�m �m−3) Eq. (34)

2 1.2–1
3 1.2–1
2 0.5–0
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2–28% 0.46–0.67 30% 1 �m, 2 �m
7–42% 1.1–1.5 30% 2 �m, 1 �m
8–42% 0.7–1.5 30% 2 �m, 2 �m

ange 0.25–0.5 such that the sum of the three volume fractions is
qual to one. With these constraints on the volume fractions, the
arameter ˛ is constrained in the range 0.5–2.5. Fig. 1 shows the
ariation of F1(˛) with ˛. Observe that F1(˛) reaches the maximum
alue of 0.25 when ˛ is equal to 1, and it varies only from 0.225 to
.25 as ˛ varies from 0.5 to 2.5. Consequently, LTPB does not vary by
ore than 10% in the range of ˛ values of interest in SOFC compos-

te cathode applications where all three phases must topologically
ercolate.

.3.2. Effect of porosity volume fraction on LTPB

In Eq. (34), the dependence of LTPB on the porosity volume
raction �P is captured in the function F2(�P), which is equal
o{�P[ln �P]2}. In principle, �P can vary from zero to one. At these
wo limits, F2(�P) and consequently LTPB, approach zero as they

ust for the model to be physically tenable. Fig. 2 shows the vari-
tion of F2(�P) with �P. Note that F2(�P) has a maximum value of
.541, when �P is equal to 0.135. Nonetheless, for practical SOFC
omposite cathode applications, YSZ, LSM, and porosity phases,
ust percolate. Therefore, �P is expected to be in the range of

.2–0.5. As �P increases from 0.2 to 0.5, F2(�P) decreases from 0.52
o 0.24 (i.e., by a factor of about two). Thus, for SOFC composite
athode applications, for given values of ˛, and mean particle sizes,
V, and the skewness of the YSZ and LSM powder populations, the
ighest value of LTPB is obtained at the lowest porosity volume frac-
ion that permits sufficient percolation and connectivity of pores
or gas permeability.

.3.3. Effects of CV and skewness on LTPB

In Eq. (34), for given mean sizes of YSZ and LSM powder par-
icles, the dependence of LTPB on the coefficient of variation CV
nd the skewness of YSZ and LSM particle size distributions is con-
ained in the function F4(CV,�), given by Eq. (35). For mono-sized
SZ and LSM, coefficients of variation, CVY and CVL, and skew-
ess, �Y and �L are zero, and therefore, F4(CV,�) is equal to one.
t is well known that for any physically realizable size distribution
unction, skewness � ≥ (−2/CV), and therefore, F4(CV,�) ≤ 1. Con-
equently, for given relative proportion of YSZ and LSM, porosity
olume fraction, and mean particle sizes of YSZ and LSM, the LTPB
as the maximum value for mono-size powders of YSZ and LSM. Any

Fig. 1. Plot of F(˛
.3 1.3–1.5

.3 1.3–1.5
.6 0.7–0.8

spread in the size distribution (i.e., non-zero CV) decreases LTPB. For
symmetric size distribution functions such as the normal distribu-
tion, the skewness � is equal to zero. For such populations, as CVY
and CVL become very large (strictly speaking, as they go to infinity),
F4(CV,�) approaches 1/9. Therefore, LTPB can decrease almost by an
order of magnitude as coefficients of variation of YSZ and LSM pow-
der populations increase from zero (corresponding to mono-size)
to infinity. Thus, there is a strong dependence of F4(CV,�) on CV. For
example, relatively small values CVY = CVL = 0.5 in normal distribu-
tions of YSZ and LSM powders reduce F4 (CV,�) to 0.51 from the
value of 1.0 for mono-size powders (i.e., CVY = CVL = 0), which leads
to a decrease in LTPB approximately by a factor of 2 as compared
to that for the mono-sized powders. Therefore, mono-size particle
populations (although YSZ and LSM can have different mono-sizes)
optimize LTPB for given mean sizes, shapes, and volume fractions of
YSZ and LSM.

Skewness of a size distribution (see Eq. (31)) can be negative,
positive, or zero. Inspection of Eq. (35) reveals that for given values
of CV of YSZ and LSM particles, F4(CV,�) is higher (and therefore,
LTPB is higher) for YSZ and LSM populations that have a negative
skewness, than for the size distributions that have positive skewness.
In a distribution having negative skewness, the mean is lower than
the median (which is lower than the mode). Therefore, negative
skewness leads to a long left tail in a size distribution. As particle
sizes cannot be negative, clearly there is a limit on the extent to
which the skewness can be negative in a physically realizable size
distribution function. It is not clear if the current powder processing
technologies can yield YSZ and LSM powder populations with a
specified CV and/or skewness values, but if that is possible, Eqs. (34)
and (35) provide a framework to compute how much improvement
in the LTPB is possible via such process designs.

3.3.4. Effects of powder particle shape/morphology on LTPB

Earlier investigations on modeling and simulations of LTPB
assumed that YSZ and LSM particles are spherical, and therefore,

did not reveal the effects of particle shape(s) on LTPB. In Eq. (34),
the effect of particle shape(s) on LTPB is contained in the function
F3(K), defined in Eq. (27). For spherical YSZ and LSM particles, F3(K)
is equal to 36. For given size distributions and the volume frac-
tions of YSZ and LSM, an increase in the function F3(K) leads to an

) versus ˛.
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Fig. 2. Plot o

ncrease in LTPB. Therefore, it is of interest to determine if there are
article shape(s) that increase the value of F3(K) substantially above
6. For such an analysis it is imperative to use the same geomet-
ic measure of “size” for particles of different shapes, because the
bjective is to determine which shape(s) increase the LTPB for con-
tant values of mean sizes, size distributions, and volume fractions
f the phases. For convex particles, the orientation averaged par-
icle caliper diameter8 is a rigorously defined unique measure of
size” that can be used to compare the “sizes” of convex particles of
ifferent shapes (say, plates and spheres). For a spherical particle,
he caliper diameter is the same in all orientations, and therefore,
he orientation averaged caliper diameter of a sphere is equal to
ts diameter. The orientation averaged caliper diameter D of any
onvex particle can be computed by using Minkowski’s equation of
ntegral geometry given below [24].

= 1
2�

[∫ ∫
HdA + 1

2

∫
�d�

]
(41)

In Eq. (41) H is the local mean curvature of an infinitesimal sur-
ace element dA on the smooth surface(s) of the convex particle and
he surface integral is to be performed over all smooth surfaces of
he particle. The second term arises from the edges (if present) on
he particle surface(s) and � is the dihedral angle of an edge ele-

ent of length d�. The second integral is to be performed over all
he edges of the particle. If the particle has only smooth surfaces
for example, ellipsoids), then the second integral is zero. In the
article population having a distribution of D values, the mean size

s denoted by 〈D〉. In Eq. (34), 〈DY〉 and 〈DL〉 are these measures of
he mean sizes of the YSZ and LSM particles.

For parametric analysis it is convenient to use cylinder as a
odel shape to generate equiaxed, plate-like (or flake-like), and

eedle-like morphologies by varying the ratio of the cylinder radius
and length L. The volume Vcyl, surface area Scyl of a cylinder are

iven as follows.[ ( )]

cyl = �

L

R
R3 (42)

cyl = 2�
[

1 +
(

L

R

)]
R2 (43)

8 Caliper diameter is equal to the distance between two parallel tangent planes
f a particle. For a convex particle, there are two (and exactly two) parallel tangent
lanes for every angular orientation. Therefore, there is a unique caliper diameter
or each orientation. Caliper diameter can vary with the tangent plane orientation.
he orientation averaged caliper diameter D is obtained by averaging the caliper
iameter over all tangent plane orientations.
P) versus �P.

Applying Eq. (41) to surfaces and edges of a cylinder yields the
following result for the orientation averaged caliper diameter D of
a cylinder.

D = 1
2

[
� +

(
L

R

)]
R (44)

Combining Eqs. (42)–(44) yields the following result.

Vcyl = 8�(L/R)

[� + (L/R)]3
D3 (45)

and,

Scyl = 8�[1 + (L/R)]

[� + (L/R)]2
D2 (46)

For cylindrical YSZ and LSM particles having constant (R/L) ratio,
one can write:

〈VY〉 = 8�(L/R)

[� + (L/R)]3
〈D3

Y〉 (47)

〈SY〉 = 8�[1 + (L/R)]

[� + (L/R)]2
〈D2

Y〉 (48)

〈VL〉 = 8�(L/R)

[� + (L/R)]3
〈D3

L 〉 (49)

〈SL〉 = 8�[1 + (L/R)]

[� + (L/R)]2
〈D2

L 〉 (50)

〈D3
Y〉, 〈D3

L 〉, 〈D2
L 〉, 〈D2

Y〉 are the population average values of D3 and
D2 for YSZ and LSM size distributions, respectively. Comparing Eqs.
(47)–(50) with Eqs. (22)–(25) yields the shape factors K1Y, K1L, K2Y,
K2L. Substituting these shape factors in Eq. (27) gives the following
result for cylindrical particle populations of YSZ and LSM having
constant (R/L).

F3(K) = [1 + (L/R)]2[1 + �(R/L)]2 (51)

Fig. 3 shows a plot of F3(K) versus (R/L). Observe that (i) for any
value of (R/L), F3(K) for cylindrical particles is higher than that for
spherical particles, (ii) F3(K) reaches high values for large (R/L) ratios
that correspond to plate-like or flake-like particle shapes, and (iii)
F3(K) reaches high values also when (R/L) approaches zero, which
corresponds to needle-like shapes. Even for equiaxed cylindrical
particles ((R/L) = 0.5), F3(K) = 59.44, which is higher than the value

of 36 for the spherical particles. For (R/L) equal to 2, F3(K) is equal to
119.25: an increase of more than a factor of three over the value of
36 for spheres. Eq. (34) reveals that for any given YSZ and LSM size
distributions and volume fractions, LTPB is directly proportional to
F3(K). Thus, it can be concluded that for given volume fractions of
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Fig. 3. Plot

he phases and particle size distributions, LTPB depends significantly
n the particle shape, and it is the lowest for spherical particles.
herefore, changing the YSZ and LSM particle shapes from spherical
o plate-like, or flake-like, or needle-like, can substantially increases
TPB. It is reported in the literature that at least LSM particles can be
roduced in a flake-like morphology [48]. Thus, the analysis brings
n interesting opportunity to optimize LTPB via a suitable choice of
article shapes.

. Summary and conclusions

An analytical expression is derived for total triple phase bound-
ry length per unit volume LTPB in the microstructure of composite
SM/YSZ cathode. It is assumed that the microstructure is isotropic
niform-random and the microstrucutral volume of the composite
athode is at least of the size of the smallest representative volume
lement of the global microstructure, and there is no significant
oarsening during the sintering process (which is reasonable for
SM/YSZ composite cathodes sintered below 1200 ◦C). The model
xplicitly brings out the effects of particle shapes, mean sizes, the
oefficient of variation and the skewness of the size distributions,
nd volume fractions of YSZ, LSM, and porosity phases on LTPB. The
arametric analysis leads to the following conclusions.

1. LTPB is the lowest when YSZ and LSM particles have spherical
shape, and it can be substantially increased by using flake-like,
plate-like, or needle-like YSZ and LSM particles.

. Mono-size YSZ and LSM particle populations lead to higher LTPB
as compared to the populations having a distribution of sizes.
Size distributions with large spread (high CV) can reduce the
LTPB by almost an order of magnitude. For a given CV, size distri-
butions with negative skewness lead to a higher value of LTPB.

. For given relative proportion of YSZ and LSM, and given mean
sizes, CV, and skewness of YSZ and LSM size distributions, the
highest value of LTPB is obtained at the lowest value of the porosity
volume fraction that yields sufficient percolation and connectiv-
ity of pores for gas flow.

. In the microstrucutral regime of interest for SOFC applications
where all the three phases, LSM, YSZ, and porosity, must topo-
logically percolate, the relative proportion of YSZ and LSM does
not significantly affect LTPB.
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